师资队伍

蒋华平

当前位置:
首页 > 师资队伍 >

蒋华平

学历:博士

职称:特聘研究员,博导/硕导

邮箱:Huaping.Jiang@cqu.edu.cn

研究方向:碳化硅电力电子技术
  • 个人简介
  • 人才培养
  • 科学研究
  • 学术兼职

个人简介

蒋华平,男,1982年生,博士,“百人计划”特聘研究员,博士生导师。从事电力电子器件及其应用技术研究18年,其中碳化硅电力电子10余年:中国中车2年、英国丹尼克斯(Dynex Semiconductor Ltd)4年、英国华威大学(University of Warwick)2年、重庆大学5年。兼备学术研究和产品研发,贯通电力电子和功率半导体芯片。重庆大学教学与科研期间,着力于高速发展的国际前沿领域——碳化硅电力电子,契合国家双碳和新能源战略。打造《功率微电子学》等课程,破除芯片与电路间壁垒,将芯片、封装、测试和应用融为一体。所培养的复合型人才,多人在中国华为、中电集团、英国华威大学、怀柔国家实验室等国内外一流企事业单位居于核心岗位,为中国乃至世界碳化硅电力电子的发展做出突破性贡献。

在IEEE Trans. Power Electronics、IEEE Electron Device Letter、IEEE Trans. Electron Devices等顶级期刊和ISPSD等顶级会议上,发表学术论文共计70余篇,其中期刊论文40余篇、会议论文30余篇。中国发明专利30余项,其中已授权26项,英国发明专利2项。牵头制定第三代半导体联盟团体标准1项,参与制定美国JEDEC标准1项。

研究成果被德国Infineon公司在其国际专利、学术论文和JEDEC标准中引用不少于7次。在碳化硅MOSFET阈值稳定性方面系统且深入的研究,最早于国际顶级期刊IEEE Electron Device Letter上报道,得到德国Infineon、美国泰克和中国华为等国际一流公司高度认可和/或合作邀请。提出非对称MMC子模块,首次于国际顶级期刊IEEE Trans. Power Electronics报道,获得南方电网高度认可。

碳化硅电力电子芯片是国家双碳和新能源战略的重要支点之一,属于典型卡脖子技术,是科技战主战场。相比于传统基于 IGBT 电力电子芯片,碳化硅电力电子芯片及其器件在小型、轻量和高效等方面具有碾压性优势,属于未来 30 年国际热门方向,急缺高层次、综合性人才。代表性应用领域是电动汽车(含充电桩)、光伏发电、直流和柔性直流输电。碳化硅电力电子方向横跨芯片、封装、测试和电路,毕业后知识面广而深,无论是从事电力电子装备开发还是功率半导体芯片设计制造,都具有技术和产业人才紧缺、迫切的需要。

欢迎电气工程、集成电路和物理学等学科/方向的学生报考博士或硕士研究生。


个人履历

2001-09 至 2005-07, 电子科技大学, 微电子学, 学士

2005-09 至 2008-07, 电子科技大学, 微电子学, 硕士

2008-09 至 2012-12, 电子科技大学, 微电子学, 博士

2013-03 至 2018-05, 株洲中车时代电气股份有限公司,SiC研发工程师

2014-07 至 2018-05, 英国Dynex Semiconductor Ltd.,SiC研发工程师

2016-02 至 2018-02, 英国University of Warwick,访问学者

2018-08 起, 重庆大学, 研究员

研究方向

1.车规碳化硅MOSFET可靠性;

2.新型碳化硅MOSFET芯片设计;

3.碳化硅电力电子控制策略与方法。


代表性论文(时间倒序)

[1]    Lei Tang, H. Jiang*, Ruijin Liao, Xiaohan Zhong, Ke Zhao, Nianlei Xiao, Yihan Huang, "Analyzing the Changes in the Third Quadrant Characteristics of SiC MOSFET Induced by Threshold Drift," in IEEE Transactions on Electron Devices, 2024, doi: 10.1109/TED.2024.3362773.

[2]    Lei Tang, H. Jiang*, Ruijin Liao, Yihan Huang, Xiaohan Zhong, Xiaowei Qi, Li Liu and Quan Zhang, "Impact of the Threshold Dispersity Evolution on the Current Sharing of Parallel SiC MOSFETS," in IEEE Transactions on Power Electronics, 2024, 10.1109/TPEL.2024.3368337.

[3]    Li Liu, Lei Tang, H. Jiang*, Fanyi Wei, Zonghua Li, Changhong Du, Qianlei Peng and Guocheng Lu, "A study on reliability evaluation of IGBT power module on electric vehicle using big data," in Journal of Semiconductors, 2024. (accepted)

[4]    H. Mao, L. Ran, H. Chen, X. Zhou and H. Jiang*, "Avalanche Capability Degradation of the Parallel-Connected SiC MOSFETs," in Microelectronics Reliability, vol. 142, Mar. 2023, doi: 10.1016/j.microrel.2023.114926.

[5]    J. Wei, H. Jiang*, N. Xiao, Z. Wu, L. Wang and L. Ran, "Multiple Phase Change Materials Integrated into Power Module for Normal and High Current Reliability Enhancement," in IEEE Transactions On Device and Materials Reliability, Jan. 2023, doi: 10.1109/TDMR.2023.3236339.

[6]    H. Mao, H. Jiang*, L. Ran, J. Hu, G. Qiu, J. Wei, H. Chen, X. Zhong, N. Xiao, L. Wang and M. Yang, "An Asymmetrical Power Module Design for Modular Multilevel Converter With Unidirectional Power Flow," in IEEE Transactions on Power Electronics, vol. 38, no. 1, pp. 1092-1103, Jan. 2023.

[7]    L. Tang, H. Jiang*, X. Zhong, G. Qiu, H. Mao, X. Jiang, X. Qi, C. Du, Q. Peng, L. Liu and L. Ran, "Investigation Into the Third Quadrant Characteristics of Silicon Carbide MOSFET," in IEEE Transactions on Power Electronics, vol. 38, no. 1, pp. 1155-1165, Jan. 2023.

[8]    H. Jiang*, X. Qi, G. Qiu, X. Zhong, L. Tang, H. Mao, Z. Wu, H. Chen and L. Ran, "A Physical Explanation of Threshold Voltage Drift of SiC MOSFET Induced by Gate Switching," in IEEE Transactions on Power Electronics, vol. 37, no. 8, pp. 8830-8834, Aug. 2022.

[9]    X. Zhong, H. Jiang*, L. Tang, X. Qi, P. Jiang and L. Ran, "Gate Stress Polarity Dependence of AC Bias Temperature Instability in Silicon Carbide MOSFETs," in IEEE Transactions on Electron Devices, vol. 69, no. 6, pp. 3328-3333, June 2022.

[10] X. Zhong, H. Jiang*, G. Qiu, L. Tang, H. Mao, C. Xu, X. Jiang, J. Hu, X. Qi and L. Ran, "Bias Temperature Instability of Silicon Carbide Power MOSFET Under AC Gate Stresses," in IEEE Transactions on Power Electronics, vol. 37, no. 2, pp. 1998-2008, Feb. 2022.

[11] H. Mao, G. Qiu, X. Jiang, H. Jiang*, X. Zhong, L. Tang, Y. Zhang, L. Ran and Y. Wu, "Investigation on the Degradations of Parallel-Connected 4H-SiC MOSFETs Under Repetitive UIS Stresses," in IEEE Transactions on Electron Devices, vol. 69, no. 2, pp. 650-657, Feb. 2022.

[12] G. Qiu, L. Ran, H. Feng, H. Jiang*, T. Long, A. J. Forsyth, W. Shao and X. Hou, "A Fluxgate-Based Current Sensor for DC Bias Elimination in a Dual Active Bridge Converter," in IEEE Transactions on Power Electronics, vol. 37, no. 3, pp. 3233-3246, March 2022.

[13] Z. Wu, H. Jiang*, Z. Zheng, X. Qi, H. Mao, L. Liu and L. Ran, "Dynamic dv/dt Control Strategy of SiC MOSFET for Switching Loss Reduction in the Operational Power Range," in IEEE Transactions on Power Electronics, vol. 37, no. 6, pp. 6237-6241, June 2022.

[14] X. Jiang, H. Jiang*, X. Zhong, H. Mao, Z. Wu, L. Tang, H. Chen, J. Cheng and L. Ran, "Impact of Gate Resistance on Improving the Dynamic Overcurrent Stress of the Si/SiC Hybrid Switch," in IEEE Transactions on Power Electronics, vol. 37, no. 11, pp. 13319-13331, Nov. 2022.

[15] L. Tang, H. Jiang*, J. Wei, Q. Hu, X. Zhong and X. Qi, “A comparative study of SiC MOSFETs with and without integrated SBD,” in Microelectronics Journal, vol. 128, pp. 0026-2692, Oct. 2022.

[16] H. Ren*, L. Ran, X. Liu, L. Liu, S. Djurović, H. Jiang*, M. Barnes and P. A. Mawby, "Quasi-Distributed Temperature Detection of Press-Pack IGBT Power Module Using FBG Sensing," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 5, pp. 4981-4992, Oct. 2022.

[17] H. Jiang*, J. Wei, X. Fang, H. Ren, W. Shao and L. Ran, "A Tj Reduced Power Module With Inbuilt Phase Change Material for Reliability Enhancement," in IEEE Transactions on Electron Devices, vol. 68, no. 9, pp. 4557-4564, Sept. 2021.

[18] H. Jiang*, X. Zhong, G. Qiu, L. Tang, X. Qi and L. Ran, "Dynamic Gate Stress Induced Threshold Voltage Drift of Silicon Carbide MOSFET," in IEEE Electron Device Letters, vol. 41, no. 9, pp. 1284-1287, Sept. 2020.